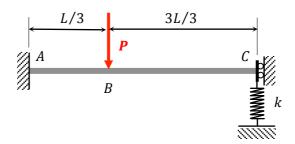
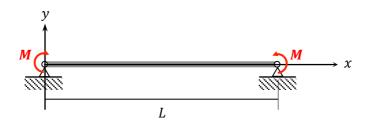


Problema 1. Considere a viga mostrada na figura abaixo, cujo material tem módulo de elasticidade E e limites de escoamento em tração e compressão $\pm Y$. O material pode ser modelado como elástico/perfeitamente-plástico. Sua seção transversal é quadrada de lado a, portanto com momento de inércia $I=a^4/12$. Logo, o momento fletor que leva ao início do escoamento na viga é $M_Y=Ya^3/6$ e o momento fletor limite é $M_L=Ya^3/4$. A viga é engastada em uma de suas extremidades. Na outra, a rotação de sua seção transversal é impedida podendo porém se deslocar na direção vertical contra a força reativa de uma mola elástica de constante k.

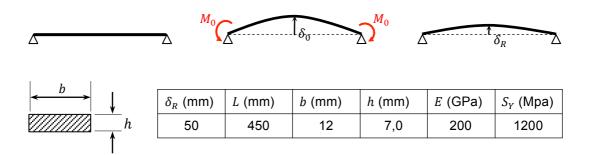


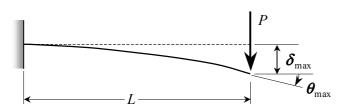
- (a) Para $k = 3EI/5L^3$, determine a carga P_Y que leva ao início do escoamento na estrutura. (3,0 pontos).
- (b) Considere agora $k \to 0$. Determine a carga de colapso plástico P_L (2,0 pontos).

Problema 2. (2,0 pontos) Uma vez conhecida a variação da curvatura, $\kappa(x)$, ao longo de uma viga, e considerando o caso de pequenos deslocamentos e rotações, o deslocamento transversal do seu eixo neutro, v(x), pode ser calculado através da integração da equação diferencial $v''(x) = \kappa(x)$. Vimos em sala de aula que esta equação é válida independentemente do comportamento do material da viga, seja ele elástico ou plástico. Para a viga mostrada na figura, simplesmente apoiada e com momentos M aplicados em suas duas extremidades, a curvatura é uniforme, ou seja $\kappa(x) = \kappa = \text{constante}$. Mostre que neste caso o valor absoluto máximo do deslocamento transversal ocorre no centro da viga e tem valor $|v|_{\text{max}} = \kappa L^2/8$.



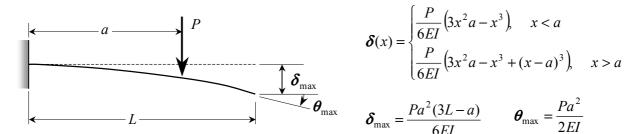
Problema 3. (3,0 pontos) A viga do Problema 2 tem seção transversal retangular e é fabricada de um aço dútil com limites de escoamento em tração e compressão dados por $\pm S_Y$. Seu material pode ser modelado como elástico/perfeitamente-plástico. Inicialmente reta, a viga sofre um ciclo de carregamento onde o momento atinge um valor máximo M_0 e retorna novamente ao zero. Ao retornar, ela permanece com um deslocamento transversal residual, δ_R , no centro do seu vão. Para os parâmetros listados na tabela abaixo, determine o valor de M_0 e a distribuição da tensão residual ao longo da seção transversal da viga.





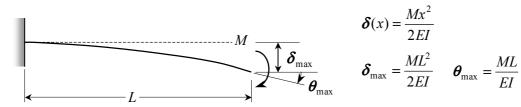
$$\delta(x) = \frac{Px^{2}}{6EI}(3L - x)$$

$$\delta_{\text{max}} = \frac{PL^{3}}{3EI} \quad \theta_{\text{max}} = \frac{PL^{2}}{2EI}$$



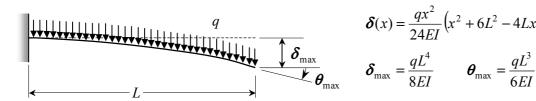
$$\delta(x) = \begin{cases} \frac{P}{6EI} (3x^2 a - x^3), & x < a \\ \frac{P}{6EI} (3x^2 a - x^3 + (x - a)^3), & x > a \end{cases}$$

$$\delta_{\text{max}} = \frac{Pa^2(3L-a)}{6EI}$$
 $\theta_{\text{max}} = \frac{Pa^2}{2EI}$



$$\delta(x) = \frac{Mx^2}{2EI}$$

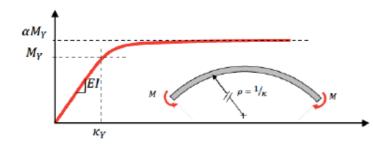
$$\delta_{\text{max}} = \frac{ML^2}{2EI} \qquad \theta_{\text{max}} = \frac{ML}{EI}$$



$$\delta(x) = \frac{qx^2}{24EI} \left(x^2 + 6L^2 - 4Lx\right)$$

$$\boldsymbol{\delta}_{\max} = \frac{qL^4}{8EI}$$
 $\boldsymbol{\theta}_{\max} = \frac{qL^3}{6EI}$

Flexão Elastoplástica



$$M(\kappa) = \begin{cases} \kappa E I, & \kappa \le \kappa_Y \\ \alpha M_Y \left[1 - \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{\kappa_Y}{\kappa} \right)^2 \right], & \kappa > \kappa_Y \end{cases}$$

$$M_Y = S_Y I / c$$

$$\kappa_Y = M_Y / E I = S_Y / E c$$

Tensões elastoplásticas para $M > M_y$

$$\sigma_{xx}(y) = \begin{cases} -S_Y, & -c \le y < -r_Y \\ yS_Y/r_Y, & -r_Y \le y < r_Y \end{cases}$$
$$S_Y, & r_Y \le y < c$$

onde
$$r_Y = c(\kappa_Y/\kappa)$$

Geometria	α	с
	1,5	h/2
	1,7	D/2
	1,3	D/2
エ	1,1 - 1,5	