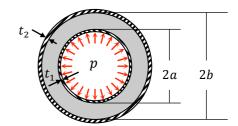
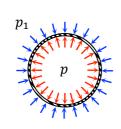
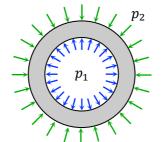
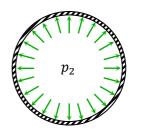


Problema 1 (3,5 pontos). Um tubo de PTFE (Teflon®), com diâmetros interno 2a e externo 2b, é revestido em suas superfícies interna e externa por tubos finos de Alumínio com espessuras t_1 e t_2 . Considere que $t_1 \ll a$ e $t_2 \ll b$. O conjunto é submetido a uma pressão interna p de 7 MPa. Determine as pressões p_1 e p_2 que são transferidas para o tubo de PTFE.





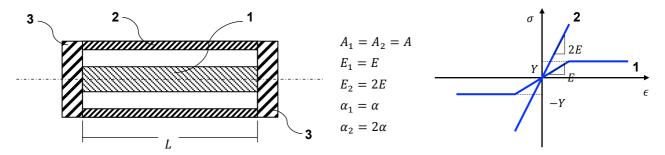




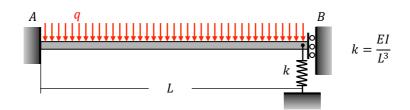
a	b	t_1	t_2	E_{Al}	$ u_{Al}$	E_{PTFE}	v_{PTFE}
30 mm	45 mm	2 mm	3 mm	70 GPa	0,30	0,4 GPa	0,46

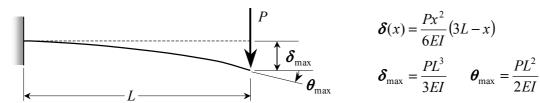
Problema 2 (3,0 pontos). Um cilindro **1** e um tubo **2**, ambos de comprimento L quando à temperatura T_0 , são montados de forma solidária em duas tampas **3** que podem ser consideradas rígidas (ver figura). O material do cilindro **1** pode ser modelado como elástico/perfeitamente-plástico, com módulo de elasticidade E, limite de escoamento Y e coeficiente de dilatação térmica α . Para os níveis de deformação observados, o material do tubo **2** pode ser considerado elástico, com módulo de elasticidade 2E e coeficiente de dilatação térmica 2α . O conjunto é submetido a uma variação de temperatura ΔT acima de T_0 .

- (a) Determine a variação de temperatura ΔT_Y a partir da qual o cilindro **1** passa a se comportar plasticamente.
- (b) Determine o deslocamento longitudinal das barras quanto $\Delta T = \Delta T_Y$.
- (c) Determine o deslocamento longitudinal das barras quanto $\Delta T = 2\Delta T_{\gamma}$.



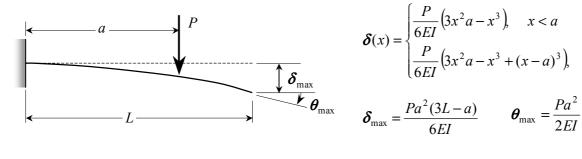
Problema 3 (3,5 pontos). A viga mostrada na figura abaixo, de comprimento L, módulo de elasticidade E e momento de inércia I, é engastada na sua extremidade A e submetida a um carregamento uniforme q. Na sua outra extremidade, B, que é livre para se deslocar na direção vertical mas impedida de sofrer rotações, a viga é também suportada por uma mola elástica com rigidez $k = EI/L^3$. Determine o momento fletor e o deslocamento vertical na extremidade B da viga.





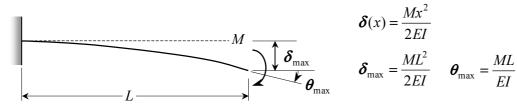
$$\delta(x) = \frac{Px^2}{6EI} (3L - x)$$

$$\boldsymbol{\delta}_{\text{max}} = \frac{PL^3}{3EI}$$
 $\boldsymbol{\theta}_{\text{max}} = \frac{PL^2}{2EI}$



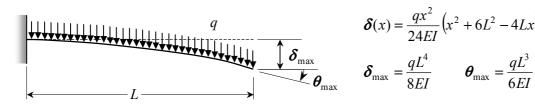
$$\delta(x) = \begin{cases} \frac{P}{6EI} (3x^2 a - x^3), & x < a \\ \frac{P}{6EI} (3x^2 a - x^3 + (x - a)^3), & x > a \end{cases}$$

$$\delta_{\text{max}} = \frac{Pa^2(3L - a)}{6EI}$$
 $\theta_{\text{max}} = \frac{Pa^2}{2EI}$



$$\boldsymbol{\delta}(x) = \frac{Mx^2}{2EI}$$

$$\boldsymbol{\delta}_{\text{max}} = \frac{ML^2}{2EI}$$
 $\boldsymbol{\theta}_{\text{max}} = \frac{ML}{EI}$



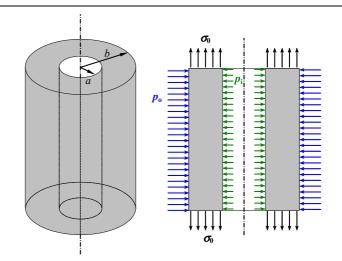
$$\delta(x) = \frac{qx^2}{24EI} \left(x^2 + 6L^2 - 4Lx \right)$$

$$\boldsymbol{\delta}_{\text{max}} = \frac{qL^4}{8EI}$$
 $\boldsymbol{\theta}_{\text{max}} = \frac{qL^3}{6EI}$

Vasos de Pressão Cilíndricos (Parede Grossa)

$$\sigma_{rr}(r) = -\frac{\left(\frac{b^2}{r^2} - 1\right)}{\left(\frac{b^2}{a^2} - 1\right)} p_i - \frac{\left(\frac{b^2}{a^2} - \frac{b^2}{r^2}\right)}{\left(\frac{b^2}{a^2} - 1\right)} p_o$$

$$\sigma_{\theta\theta}(r) = \frac{\left(\frac{b^2}{r^2} + 1\right)}{\left(\frac{b^2}{a^2} - 1\right)} p_i - \frac{\left(\frac{b^2}{a^2} + \frac{b^2}{r^2}\right)}{\left(\frac{b^2}{a^2} - 1\right)} p_o$$



$$\frac{u_r(r)}{r} = \frac{(1-\nu) + (1+\nu)(b^2/r^2)}{E(b^2/a^2-1)} p_i - \frac{(1-\nu)(b^2/a^2) + (1+\nu)(b^2/r^2)}{E(b^2/a^2-1)} p_o - \nu \frac{\sigma_0}{E}, \ a \le r \le b$$

Vasos de Pressão Cilíndricos (Parede Fina): Raio R e espessura t ($R \gg t$).

$$\sigma_{\theta\theta} = \frac{(p_i - p_o)R}{t} \,, \qquad \sigma_{xx} = \frac{(p_i - p_o)R}{2t} \,, \qquad \frac{\Delta R}{R} = \frac{(p_i - p_o)R}{Et}$$

Barra elástica sob carregamento axial

$$\frac{\Delta L}{L} = \frac{N}{EA} + \alpha \Delta T$$
 para $|N/A| < Y$